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FMRI? It's easy!
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FMRI? It's easy!
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Stage 1- Single Subject Analysis

. generates a Unix shell script to run a
standard sequence of tools on an individual subject’s
time series datasets.

Despiking

RETROICOR-izing

Time shifting

Volume registration

Blurring

Mask generation [not applied at individual subject level]
EPI Scaling

Regression analysis

Spatial normalization

Output datasets are ready for group-level analyses
All processing blocks are optional and customizable

Users are very encouraged to look at intermediary

results
— Data checking sequence automation
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Spikes and other spiky things
* Not all spikes are created equal

— Motion, usually OK

— Hardware spikes need to be dealt with

— Weirder artifacts appear with fancier equipment

« Spikes could get propagated with time series
filtering, such as slice timing correction.

— Reduce them before such operations

* Look at them before deciding what to do next
— |f they are due to motion, then motion regressors
would absorb them

— Could add a regressor for a spike, or just censor time
point in latter analysis
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Hardware Spike
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Hardware Spike

I: data/spiking Bri % BBallruns+orig

1718

[&]
= ARIAL  X: 26| Ignore 1 '
i - : - -‘ "[—[!_ ¥: 15| Grid: 500|Scale: 2 datum/pix | Mean:  1992.196
IDispMSavl, jeglMont §DonellRec |:0. 2905 ent=4.9 [¥| BB—=mi— 2: 16| # 0:102 | Base: separate Sigma: 43.83363

e Spikes caused by loose gradient coil connection




Weirder Spikes
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Weirder Spikes
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Weirder Spikes
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Motion Correction

* Within-modality: T2* to T2* or T1 to T1

— Least squares cost functional is simple and robust

— For EPI time series, rigid body (6 parameters) is
typically used.




Movement Corrected
Spikes remain
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Movement Corrected
Spikes remain

X [A]u AFNI: ./afnifepi_rl_vr+orig & func_slim+orig

X! [AJu AFNI: ./afni/epi_rl_vr+orig & func_slim+orig

M,

il

ekl

QOlUE 1. 32| Ignore 2

J: 25| Grid: 100

PO K 22/ M 0:66

Scale: 3 datum/pix
Base: separate

index=42
Mean: 4149308
Sigma:  38.8605




Motion Correction

* Cross modality registration T1 to T2* for
example
— A variety of joint histogram based cost functionals

» Elegant and general purpose.
« But they can reach lowest cost at bad alignment

— We propose the use of Local Pearson Correlation for
an EPI to T1 cost functional




T2*<T1

Alignment of EPI T,*-weighted volumes to structural T,-
weighted volumes (e.g., MPRAGE or SPGR) using generic
inter-modality registration metrics ( , ) fails 10+% of the
time
— Brain outlines may match, but internal structures can be 10+ mm away

— Precise alignment needed for: cortical surface based analyses, use of
anatomically defined ROls, pre-surgical planning, ...

Local Pearson Correlation ( ) metric ( ):

— Compute correlation coefficients between EPI and structural volume
locally over a collection of neighborhoods that cover the brain

— Average this collection of correlations, weighted towards CSF regions
(high intensity in EPI, low intensity in anatomical)

— Optimization: adjust alignment until IS as negative as possible
— Variant: | | has been used to register 7T and 3T MPRAGEs

More robust than 'utual nformation or ‘ orrelation atio

But: user should always check image alignments visually
— Edge enhanced image overlays are useful for this purpose
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Results: EP| Edges Atop Anatomical Slices
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Stimulus Correlated Movement

* By accident

— Stimulus induced

 Could confound results

— Can happen in subtle ways as tensing up shoulders
or changing breathing depth

— Warning sign is stimulus-correlated signals on edge
of brain

 Careful consideration of stimulus timing can
reduce this problem

— Uncorrelated with Stimulus

« Adds variance to data, resulting in less power
* By design
— Speech production, swallowing, etc.




"Activation" Artifacts

R.M. Birn, et al. Human Brain Mapping 7(2), 106-114, 1999
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 Non-BOLD signal changes correlated with task timing

Slide courtesy of R. Birn




Motion Effect is Immediate
BOLD Effect is Delayed

Blocked Design

motion

BOLD response
task

t—)

Event-Related Design

BOLD response

motion
o -~

task

Slide from R. Birn




Avoid Motion by Optimizing Stimulus Timing
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R.M. Birn, et al., Neurolmage, 23, 1046-1058, 2004. Slide from R. Birn




Physiological Signal Monitoring

* Heart pulsation and breathing add variance to BOLD

SignaIS Glover et al., Magn Reson Med 2000

— Direct effects: movement of tissue and blood

— Indirect effects: changes in baseline oxygenation

Wise et al., NI 2004; Birn et al., NI 2006,
2008; Shmueli et al., NI 2007; Bianciardi et
al., MRI 2009; Chang et al., NI 2009

Modeling such effects reduces residual variance

— At least 30% in majority of voxels

These effects can be especially troublesome in
resting state FMRI
— Effects can be coherent over distant parts of cortex

— Account for larger fraction of variance of interest
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Physiologic rate regressors: modeling issues

The phase and the shape of the expected fMRI signal changes
due to fluctuations in the rates of respiratory and cardiac

pulsation are not fully understood...

Respiration volume AR
per unit time (RVT) ~ At
regressor
Birn et al., NI, 2006

Cardiac rate (CR) 1
regressor Ate

Shmueli et al, NI, 2007
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Sample R-RICOR Result: Anat
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Sample R-RICOR Result: Anat w/ EPI
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SSE Ratio > 1.3: No Motion/Full Model
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SSE Ratio > 1.3: No R-RICOR/Full Model

X [B]u AFNI: Kristina.E1634.new/sos/mprage_scan_9#001+orig & ratio.s.5.motion.only+orig
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SSE Ratio > 1.5: No Motion/Full Model
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SSE Ratio > 1.5: No R-RICOR/Full Model

X [B]u AFNI: Kristina.E1634.new/sos/mprage_scan_9#001+orig & ratio.s.5.motion.only+orig
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R-RICOR, Motlon SSE Ratio Overlap

X [B]u AFNI: Kristina.E1634.new/sos/mprage_scan_9 001+01|q & ratio.overlap.motonly.ricoronly.1.5+orig
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Linear Regression In Stage 1




Hemodynamic Response Function (HRF)

HREF is the idealization of measurable FMRI signal change
responding to a single activation cycle (up and down) from a
stimulus in a voxel

Response to brief
activation (< 1 s):
- delay of 1-2 s

. rise time of 4-5 s
. fall time of 4-6 s
- model equation:

. h(t) is signal
change t seconds
after activation

a4, & & T. B W 10.11,
Time




Convolution Signal Model

+  FMRI signal model (In each
voxel) is taken as sum of the
individual trial HRFs (assumed
equal)

> Stimulus timing is assumed known (OF

measured)

» Resulting time series (in blue) are called
the convolution of the HRF with stimulus
timing

1L, EArs X 1.7, N .V, ¥, W¥W,

» Finding HRF =“deconvolution”
> AFNI code Real data starts at and
returns to a nonzero,

» Convolution models only the FMRI signal slowly drifting baseline

changes




Simple Regression Models

« Assume a fixed shape h(t) for the HRF

> e.g., h(t) = t86 exp(-t/0.547) [MS Cohen, 1997]
» Convolve with stimulus timing to get ideal response
r(t) = zilh(t — T, ) = sum of HRF copies
 Assume a form for the baseline (data without activation)
» e.g., a+ bt foraconstant plus a linear trend

* |n each voxel, fit data Z(t) to a curve of the form

Zty~a+b-t+p-r(t)

e a, b, p are unknown values to be found in each voxel

e a, b are “nuisance” parameters
e fBis amplitude of r(t) in data = *how much” BOLD

e In this model, each stimulus assumed to get same BOLD response — in
shape and in amplitude




Equations: Matrix-Vector Form

 EXxpress known data vector as a sum of known
columns with unknown coefficents:

Const baseline
Linear trend
Response to stim#1
Response to stim#2

vector matrix of ¢
of data columns Yector
of coeff

the “design” matrix; AKA X
z depends on the voxel; R doesn’t




Solving z=Rg for

Number of equations = number of time points

— 100s per run, but perhaps 1000s per subject
Number of unknowns usually in range 5-50

Least squares solution: 8= [RTR]'R" 7

> [ denotes an estimate of the true (unknown) g

> From B, calculate z= R B as the fitted model

* 7 - Z Is the residual time series = NOISE (we hope)

 Statistics measure how much each regressor helps reduce residuals

Collinearity: when matrix = R’R  can’t be inverted

» Near collinearity: when inverse exists but is huge




Simple Regression: Recapitulation
Choose HRF model h(¢) [AKA fixed-model regression]

Build model responses r,(¢) to each stimulus class
» Using h(tr) and the stimulus timing

Choose baseline model time series

» Constant + linear + quadratic (+ movement?)

Assemble model and baseline time series into the columns
of the R matrix

For each voxel time series z, solve z=Rp for g

Individual subject maps: Test the coefficients in g that you
care about for statistical significance

Group maps: Transform the coefficients in g that you care

about to Talairach space, and perform statistics on the
collection of g values across subjects




Take a look at your model fit




Same Voxel: Runs 1 and 2

Noise ~ same size as Asignal

Block-trials: 27 s “on” / 27 s “off”; TR=2.5 s; 130 time points/run




Two Voxel Time Series from Same Run
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Deconvolution Signal Models

« Simple or Fixed-shape regression :
— We fixed the shape of the HRF — amplitude varies

— Used -stim times to generate the signal model (AKA
the “ideal”) from the stimulus timing

— Found the amplitude of the signal model in each voxel —
solution to the set of linear equations = 8 weights

« Deconvolution or Variable-shape regression :

— We allow the shape of the HRF to vary in each voxel, for
each stimulus class

— Appropriate when you don’t want to over-constrain the
solution by assuming an HRF shape

— Caveat: need to have enough time points during the
HRF in order to resolve its shape (e.g.,, TR < 3 s)




Deconvolution: Pros & Cons (+ & —)

+ Letting HRF shape varies allows for subject and
regional variability in hemodynamics

Can test HRF estimate for different shapes (e.g.,
are later time points more “active” than earlier?)

Weird shapes in HRF usually indicate problem

with timing, design, etc.

Need to estimate more parameters for each
stimulus class than a fixed-shape model (e.g., 4-15
vs. 1 parameter=amplitude of HRF)

Which means you need more data to get the

same statistical power (assuming that the fixed-shape
model you would otherwise use was in fact “correct”)




Expressing HRF via Regression Unknowns
The tool for expressing an unknown function as a
finite set of numbers that can be fit via linear
regression is an expansion in basis functions

h(t) = ﬁo'/’o(t)*' /317/}10)"' ﬁsz(t)+ U E Eﬁq%(f)

— The basis functions v, (¢) & expansion order p are known
* Larger p = more complex shapes & more parameters

— The unknowns to be found (in each voxel) comprises the set of
weights g, for each v (¢)

B weights appear only by multiplying known
values, and HRF only appears in signal model by
linear convolution (addition) with known stimulus
timing

Resulting signal model still solvable by linear regression




3dDeconvolve with “Tent Functions”

Need to describe HRF shape and magnitude with a finite
number of parameters

— And allow for calculation of 4(z) at any arbitrary point in time after the
stimulygti

Simplest set of such functions are

— Also known as “piecewise linear splines”

1—|x| for —1<x<1
T(x)=
0 for |x| > 1

time

— e

t=0 t=TR t=2-TR t=3-TR t=4-TR t=5TR




Tent Functions = Linear Interpolation A

 Expansion of HRF in a set of spaced-apart tent functions is
the same as linear interpolation between “knots”

h(t)=/30-T(%) +/31.T(t;L) +[3’2-T(t‘Z'L) +/33°T(t_2°L) i

N.B.: 5intervals = 6 § weights

~ ., ‘ time

L 2-L 3-L 4-L 5-L
Tent function parameters are also easily interpreted as
function values (e.g., B, = response at time t = 2-L after stim)

User must decide on relationship of tent function grid spacing
L and time grid spacing TR (usually would choose L = TR)

In . specify duration of HRF and
number of g parameters




Deconvolution Regression
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AM Regression - 1
AM = Amplitude Modulated (or Modulation)

— Have some extra data measured about each response to a stimulus,
and maybe the BOLD response amplitude is modulated by this

— Reaction time; Galvanic skin response; Pain level perception;
Emotional valence (happy or sad or angry face?)

Want to see if some brain activations is linearly proportionally
to one or more ABI (Auxiliary Behaviorial Information)

Need to make 2 separate regressors
— One to find the mean FMRI response (the usual -stim times analysis)
— One to find the variations in the FMRI response as the ABI data varies

The second regressor should have the form

— Where a,=value of k" ABI value, and « is the average ABI value
Statistics and g for second regressor make activation map of
places whose BOLD response changes with changes in ABI




IM Regression - 1

IM = Individual Modulation

—Compute separate amplitude of response for each
stimulus
*Instead of computing average amplitude of responses to
multiple stimuli in the same class
—Response amplitudes (Bs) for each individual
block/event will be highly noisy

*Can’t use individual activation map for much

*Must pool the computed fs in some further statistical

analysis (t-test? inter-voxel correlations in the fs? model s as a
function of some stimulus parameter ?)

—Usage: -stim times IM k tname model

‘Like -stim times, but creates a separate regression
matrix column for each time given




IM Regression - 2

* IM estimates over 64 stimulus events
« Experiment: 64 blocks of sensorimotor task (8 runs each with
8 blocks)

* No exciting trend there, but notice sign reversal due to
protocol error.
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N.B.: sign reversal in run #4 = stimulus timing error!




Variance and serially correlated noise

White noise estimate of variance: Ag 1
: : L . : O =——
— N = number of time points; i = time index N —m
— m = number of fit parameters
— N—m = degrees of freedom (DOF) = how many equal-variance
independent random values are left after the time series is fit with m

regressors
*OLSQ assumption is that each of the N noise values in the data time series
are equal-variance and independent (AKA white noise)

If noise values aren’t independent, then N—m is too large an

estimate of DOF, so variance estimate is too small

Two possible solutions are:

1)Adjust variance estimate (and so the ¢- and F-values) to allow for fewer
DOF

2)Come up with a different variance estimator that has all N—m DOF
possible ( )
o Requires estimating the temporal correlation structure of the noise as well

o Once temporal correlation matrix is known, use Generalized Least Squares
(GLSQ; AKA pre-whitening) to estimate g parameter vector

o GLSQ is consistent and should produce g with smaller variance than OLSQ

N-1
E [data, — fit, ]’

i=0




OLSQ and GLSQ

 Activation magnitudes (B s) estimated using OLSQ
(Ordinary Least Squares) are consistent

— “Consistent” means that if you repeated the identical experiment
infinitely many times, and averaged the estimated value (e.g., 8 ; 0?),
result would be the true value

« Variance of s (0?s) is under-estimated with OLSQ in the
presence of serial correlation

— If the variance is under-estimated, then the individual subject # and
F-statistics will be over-estimated

* Group (stage 2) models that ignore (o°s) (ttest, anova, etc)
give same results as models whether g s we obtained from
OLSQ or GLSQ.

— However newer approaches do carry g s and o°s to group statistics
so GLSQ is needed

Keith Worsley’s FMRIstat, = FSL's FLAME AFNIl's 3dMEMA




Standard Space For Group Analysis

« Single subject data needs to be aligned to a group template
and resampled to a common grid
— This allows for a voxelise comparisons across subjects

X [A] AFNI: AFNI_Templates_Atlases /N27 /MNI_N27+tlrc & TT_N27+tlrc
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Atlases Distributed With AFNI
TT Daemon

« TT _Daemon : Created by tracing Talairach and Tournoux brain illustrations.
Generously contributed by Jack Lancaster and Peter Fox of RIC UTHSCSA)

X/ [A] AFNI: ziad/abin/TT_N27+tlrc & TTatlas+tlrc X/ [A] AFNI: ziad/abin/TT_N27+tlrc & TTatlas+tlrc
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Atlases Distributed With AFNI
Anatomy Toolbox: Prob. Maps, Max. Prob. Maps

« CA N27_MPM, CA N27_ ML, CA_N27 PM: Anatomy Toolbox's atlases with
some created from cytoarchitectonic studies of 10 human post-mortem brains

— Generously contributed by Simon Eickhoff, Katrin Amunts and Karl Zilles of IME,
Julich, Germany Eickhoff S. et al. 05

O X [A] AFNI: ziad/abin/TT_N27+tlrc & TT_N27_CA_EZ_PMaps+tlrc N X [A] AENI: ziad/abin/TT_N27+tlrc & TT_N27_CA_EZ_MPM+tlrc
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Atlases Distributed With AFNI:
Anatomy Toolbox: MacroLabels

« CA N27_MPM, CA N27_ ML, CA_N27 PM: Anatomy Toolbox's atlases with
some created from cytoarchitectonic studies of 10 human post-mortem brains

— Generously contributed by Simon Eickhoff, Katrin Amunts and Karl Zilles of IME, Julich,
_Germany

Quit

+++++++ nearby Atlas structures +++++++

Focus point {LPI}=
-49 mm [L], 7 mm [A]., 25 mm [S] £{T-T Atlas}
-49 mm [L], 6 mm [A]., 28 mm [S] {MNI Brain}
532 mm [L], 8 mm [A]., 28 mm [S] {MNI Anat.3

Atlas TT_Daemon: Talairach-Tournoux Atlas
Focus point: Left Inferior Frontal Gyrus
Within 1 mm: Left Brodmann area 9
Within 4 mm: Left Precentral Gurus

-AND- Left Brodmann area 44
Within 5 mm: Left Brodmann area 6
Within 6 mm: Left Middle Frontal Gyrus

-AND- Left Brodmann area 45

Atlas CA_N27_MPM: Cytoarch, Max, Prob, Maps (N27)
Focus point: Area 44
Within 5 mm: Area 45

Atlas CA_NZ7_ML: Macro Labels {(N27)
Focus point: Left Inferior Frontal Gyrus {p, Opercularis}
Within 2 mm: Left Inferior Frontal Gyrus {p, Triangularis}
Within 4 mm: Left Precentral Gyrus

Atlas CA_N27_PM: Cytoarch, Probabilistic Maps (N27)
Focus point: Area 44 {p = 0,60}
-AND- Area 45 {(p = 0,30}
-AND- Area 3b {(p = 0,10}

Atlas CA_N27_LR: Left/Right (N27}
Focus point: Left Brain

|

-
left=Right short!

Jiiier |Savl.ppm Pini |Done IRec'




Auit
Where am I ? +++++++ nearby Atlas structures +++++++

Focus point {(LPI)=
-12 mm [L]. =76 mm [P]. 9 mm [S] £T-T Atlas}

ShOWS yOU Where yOu -12 mm [L]. =79 mm [P]. 6 mm [S] {MNI Brain3
. . -13 mm [L]. -84 mm [P]. 16 mm [S] fMNI Anat,3
are in various atlases.

Atlas TT_Daemon: Talairach-Tournoux Atlas

- - Focus point: Left Cuneus
(WOI’kS n +Orlg tOO’ Within mm: Left Brodmann area 17
; Within mm: Left Brodmann area 23
If yOU have a TT Within mm: Left Brodmann area 18
Within mm: Left Lingual Gyrus
tranSformed parent) Within mm: Left Brodmann area 30

Atlas CA_N27_MPM: Cytoarch, Max, Prob, Maps {(N27)
Focus point: Area 17

For atlas installation, Hithin 7 mm: Area 18
and mUCh mUCh Atlas CA_N27_ML: Macro Labels (N27)

Focus point: Left Calcarine Gyrus

I Within 2 mm: Left Cuneus
more’ See help In Within 3 mm: Left Superior Occipital Gyrus

I Within 7 mm: Left Middle Occipital Gyrus
Com_rnand Ilne -AND- Left Linual Gyrus
version:

Atlas CA_N27_PM: Cytoarch, Probabilistic Maps (N27)

. Focus point: Area 17 {(p = 0,90
whereami -help -AND- Area 18 {(p = 0,10}

Atlas CA_NZ7_LR: Left/Right (N27)
Focus point: Left Brain




In this example, 4 ROI clusters were found that fit the criteria designated by

the 3dclust command. Below is an explanation of the output:

p 3 4 5 7 8 9 10 11 12 13 14 15
CHMRL CM AP CM IS minRL maxBL minAP maxAP minIS maxIS Mean SEM Max Int MI RL MI AP MI IS

29354 1.4 -61.4 -16.4 - 58.7 -19.4 26,1 : : 94,727 -38,9 28,7
alsd 55l 3.8 47.3 5 98,7 -12.4 26.1 : A 80,252 32,3 28,7
24,8 37,8 -42,7 -20,2 5 32,5 26,1 54,1 : > 29,788 -23,9 28,7

29,6 3 . 21,2

Volume: Size of each cluster volume
CMRL: Center of mass (CM) for each cluster in the Right-Left direction

CM AP: Center of mass for each cluster in the Anterior-Posterior direction
CM IS: Center of mass for each cluster in the Inferior-Superior direction
minRL,maxRL: Bounding box for cluster, min & max coordinates in R-L direction
minAP,maxAP: Bounding box for cluster, min & max coordinates in A-P direction
minlS, maxIS: Bounding box for cluster, min & max coordinates in |-S direction
Mean: Mean value for each volume cluster

SEM: Standard error of the mean for the volume cluster

Max Int: Maximum Intensity value for each volume cluster

MIRL: Maximum Intensity value in the R-L direction of each volume cluster
MI AP: Maximum intensity value in the A-P direction of each volume cluster
MIIS: Maximum intensity value in the I-S direction of each volume cluster




- whereami can report on the overlap of ROls with atlas-
defined regions

whereami -omask anat_roi+tlrc

Input coordinates orientation set by default rules to RAI
Input coordinates space set by default rules to TLRC
In ordered mode ...
Have 2 unique values of:
0 1
Skipping unique value of 0
Processing unique value of 1
195 voxels in ROI
++ 195 voxels in atlas-resampled mask
Intersection of ROI (valued 1) with atlas TT_Daemon (sb0):
89.2 ¥ overlap with Middle Occipital Gyrus, code 33
6.7 ¥ overlap with Middle Temporal Gyrus, code 35

95.9 ¥ of cluster accounted for,

Intersection of ROI (valued 1) with atlas TT_Daemon (sbl):
13.5 ¥ overlap with Brodmann area 37, code 113
1.5 # overlap with Brodmann area 19, code 396
21,0 ¥ of cluster accounted for,

++ 195 voxels in atlas-resampled mask

Intersection of ROI (valued 1) with atlas CA_N27_MPM (sb0):
1.5 Z overlap with hOCS (Y5 / MT+), code 110
1.5 ¥ of cluster accounted for,

++ 195 voxels in atlas-resampled mask

Intersection of ROI (valued 1) with atlas CA_N27_ML (sb0):
61,0 ¥ overlap with Right Middle Occipital Gyrus, code 52
20,0 % overlap with Right Middle Temporal Gyrus, code 86

81,0 Z of cluster accounted for,




Localization In Standard Spaces

Single location not enough

Specify units, template, and space
Describe coverage

Look at the data, know the anatomy




t'-Voxel
Statistics

Spatial Clustering

False Discovery Rate:

“Correcting” the Significance




Basic Problem

* Usually have 20-100K FMRI voxels in the brain
e Have to make at least one decision about each one:

— Is it "active™?
* Thatis, does its time series match the temporal pattern of activity we

expect?

— Is it differentially active?
« Thatis, is the BOLD signal change in task #1 different from task #27?

« Statistical analysis is designed to control the error
rate of these decisions

— Making lots of decisions: hard to get perfection in
statistical testing




Multiple Testing Corrections

 Two types of errors

What is H, in FMRI studies? H: no effect (activation, difference, ...) at a voxel

— Type | error = Prob(reject Hy when H is true) = false positive = p value

Type Il error = Prob(accept H, when H, is true) = false negative = 8

power = 1—( = probability of detecting true activation

— Strategy: control type | error while increasing power (decrease type |l errors)

— Significance level a (magic number 0.05) : p < «

Justice System: Trial
Hidden Truth

Defendant Defendant
Innocent Guilty

Reject
Presumption of
Innocence
(Guilty Verdict)

Type | Error
(defendant very
unhappy)

Correct

Fail to Reject
Presumption of Type Il Error

Innocence (Not Correct (defendant very
Guilty Verdict) happy)

Statistics: Hypothesis Test
Hidden Truth

Ho True
Not Activated

Hy False
Activated

Reject H
(decide voxel is
activated)

Type | Error

(false positive) Correct

Don’t Reject H,
(decide voxel isn’t
activated)

Type Il Error

Correct (false negative)




Family-Wise Error (FWE)
— Simple probability example: sex ratio at birth = 1:1
» Chance there are 5 boys in a family with 5 kids: (1/2)°~ 0.03

« For 10,000 families with 5 kids, expected #families with 5 boys:
10,000 x (2)>= 312

— Multiple testing problem: voxel-wise statistical analysis

With N voxels, what is the chance to make a false positive error
(Type I) in one or more voxels?

Family-Wise Error: of,, = 1-(1-p)Y =1 as N increases

For N-p small (compared to 1), agyy= N-p
N = 20,000+ voxels in the brain

To keep probability of even one false positive o, < 0.05 (the
“corrected” p-value), need to have p < 0.05/2x104=2.5x10-°

This constraint on the per-voxel (“uncorrected”) p-value is so
stringent that we’'ll end up rejecting a lot of true positives (Type |l
errors) also, just to be safe on the Type | error rate

— Group analysis is the most severe situation

» (have the least data, considered as number of independent
samples = subjects




Approaches to the “Curse of Multiple Comparisons”

Bonferroni correction

Use p = a/N as individual voxel significance level to
achieve oy = a

" Too stringent and overly conservative: p = 10-8...10-°

« Rescue from hell of statistical super-conservatism?

= Correlation: Voxels in the brain are not independent
= Especially after we smooth them together!
» Means that Bonferroni correction is way way too stringent

= Contiguity: Structures in the brain activation map

= We are looking for activated “blobs”: the chance that pure noise (H,)
will give a set of seemingly-activated voxels next to each other is
lower than getting false positives that are scattered apart

= Control FWE based on spatial correlation and minimum
cluster size we are willing to accept

- Control false discovery rate (FDR)

— FDR = expected proportion of false positive voxels among
all detected voxels




- Example: AlphaSim -nxyz 64 64 20 -dxyz 3 3 5 \
-fwhm 5 -pthr 0.001 -iter 1000

« Qutput is in 6 columns: focus on 18t and 6™ columns (ignore others)

— Cl Size Frequency
1 47064

2 11161

111

32

20

8

10 2

CumuProp
0.751113

0.

929236

. 998995
.999505
. 999825
. 999952
.9999084

Alpha

.000000
.000000

.158000
.058000
.029000
.010000
0.

003000

= At this uncorrected p=0.001, in this size volume, with noise of this smoothness:
the chance of a cluster of size 8 or larger occurring by chance alone is 0.029

= May have to run several times with different uncorrected p

uncorrected p T

required minimum cluster size T
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Adapting FDR to get MDF - 1

MDF = Missed Detection Fraction

= fraction of true positives with p-value below a threshold
= Raise threshold enough: MDF goes to 100% as FDR goes to 0%

= typically 50+% in FMRI: we're missing 1/2 the activations

Estimate m, = total fraction of true positives in data
e Compare bulk of p-value histogram with uniform
distribution assuming no true positives

e Deficit between and uniform
histogram gives estimated number of true positives

31,555 voxels

50 histogram bins
[Same data as before]




Adapting FDR to get MDF - 2

At given threshold: have J detections out of N voxels
— # false detections = qJ
— # true detections = (1-q)J

— Fraction of true detections =
# true detections + # true positives = (1-q)J + m;N
Missed detection fraction = MDF = 1- [(1-q)J + m,N]

MDF estimate is in a popup “hlnt” in AFNI GUI
p 0064 g[**—,—

Uncorrected p=6.4113e—-033 FDR =5. 0028e 023 MDF=60,5%

* The key to getting MDF is a good estimator for m,
— Which is hard to do accurately (e.g., lots of assumptions)

— So MDF is just a crude approximation at this time
— Estimate of m, is also used to adjust FDR: q'=(1-m,)q

L ® LWL . AL RV AL IS |




Group (Stage 2) analysis

« Earlier approaches only carry beta coefficients to
the group level analysis

— Within/intra-subject variability (standard error,
sampling error) is relatively small compared to
cross/between/inter-subjects variability

— Within/intra-subject variability roughly the same

across subjects
* TTest (paired, unpaired)
« ANOVA (1-5 way)

- 3dLME combination of random and fixed effects
analysis
— Unbalanced designs (unequal # of subjects, missing data, etc.)
— ANOVA and ANCOVA, with unlimited # of factors & covariates

— Violations of sphericity: heteroscedasticity, variance-covariance
structure of observations (e.g., temporal correlation in HRF s)




Group (Stage 2) analysis

 Newer approaches carry beta and variance

— 3dMEMA (heteroscedasticity, account for beta
variance)

» Trust those f's with high reliability/precision (small SE or o)
through weighting

— f with lower SE has more say in the final result
— B with less significance gets downgraded

— Results are more robust than earlier approaches

— But more limited in types of tests than other such as
3dLME




ANOVA: ' MEMA:
12 Control Control
subjects A 7, subjects

ANOVA: MEMA:
12 Patients Patients

Data courtesy
James Bjork
NIDA/NIH




Results:

73
1 -

jte

Quit ‘Disp |Sau1.Jpg Mont. | [Done IRec
1 &

nearby Atlas structures

Focus point {(LPI)=
14 mm [R], 7 mm [A], -3 mm [I] £T-T Atlas}
14 mn [R], 7 mm [A]. -3 mm [I] {MNI Brain}
15 mn [R], & mm [A]. -4 mm [I] {MNI Anat.3

Atlas TT_Daemon: Talairach-Tournoux Atlas

Focus point: Right Lentiform Nucleus

-AND- Right Putamen
Within 1 mm: Right Lateral Globus Pallidus
KHithin 4 mm: Right Caudate

-AND- Right Nucleus Accumbens

- Right Caudate Head

o - Right Medial Globus Pallidus
KWithin 7 mm: Right Subcallosal Gyrus

-AND- Right Brodmann area 34

Atlas CA_N27_ML: Macro Labels (N27)
Focus point: Right Putamen
KWithin 1 mm: Right Caudate Nucleus
KWithin 3 mm: Right Pallidum
KWithin 4 mm: Right Olfactory cortex
KWithin 5 mm: Right Rectal Gyrus

Data courtesy
James Bjork
NIDA/NIH

Coronal: left=lLeft byte

VS.

Same uncorrected p-values;
ANOVA does not survive FDR;
MEMA laughs at such quibbles

Volume rendering movie pair
made in A : 5-10 min work




Results: 3dttest vs. 3dMEMA

« Color = Difference between t-statistics in voxels with #(30) > 2

(red >= 2.8, 1.7 <= orange < 2.8; 0.5 <= yellow < 1.7; -0.5 <= green < 0.5; blue <= -0.5)
Majority of significant voxels gained power (warm colors)

Data courtesy
Vince Costa
U Florida




Start simple: one-sample test
* Random-effects: y=0+¢c=a,+6+¢, for ith subject

/
— y;: Borlinear combination (contrast) of g’s from ith subject
- O0=a,+0; “true” individual effect from ith subject
— a,: group effect we'd like to find out
- O, : deviation of ith subject from group effect a,, N(0, 12
— ¢&: sample error from ith subject, N(0, o), o> known!

« Special cases

- 07=0 reduced to conventional group analysis:
One-sample t: y; = a, +0,

— 070 (7%=0) assumed in fixed-effects model: Ideally we could find

out all possible explanatory variables so only an FE model is
necessary!




MEMA with one-sample test

* Random-effects: y. = a, +, + ¢, for ith subject
- 0,~ N(0, 1), & ~ N(0, 0?), 0”2 known, T2 unknown

— What can we achieve?
dNull hypothesis about group effect H,: a,= 0

L Checking group heterogeneity H,: 72=0
ANy outliers among the subjects? Adding some confounding
variable(s)? Grouping subjects?
— We know o7, and pretend we also knew 12, weighted least
squares (WLS) gives
dThe “best” estimate
O BLUE: unbiased with minimum variance

— Unfortunately we don’t know 712




Solving MEMA

- Estimating 72: a few approaches
— Method of moment (MoM) - DSL
— Maximum likelihood (ML)
— Restricted/residual/reduced/marginal ML (REML): 3dMEMA

« Statistical testing

— Group effect a,=0:

dWald or Z-test: assume enough subjects with normal
distributions

L Go with t-test when in doubt
— Heterogeneity test 7=0:
— Outlier identification for each subject through Z-statistic




A slightly more complicated case
dy, = o +ox, +...+a, X, +0, + &, for ith subject
— Mixed-effects model or meta regression
— y;: por linear combination (contrast) of g’s from ith subject

- o,: common group effect we'd like to find out

— X; an indicator/dummy variable showing, for example,
group to which ith subject belongs, level at which a factor
lies, or a continuous variable such as covariate (e.g., age,

Q) (j=1,...,p)
- O, : deviation of ith subject from group effect «,, N(0, 72)
— ¢&: sample error from ith subject, N(0, o), o2 known!

[ Combine subjects into a concise model in matrix
form
— Ynx1 T anpapx1 +9
— y ~ N(Xa, 7°1+V), V = diag(0y,..., 0,) known, 72 unknown

— Estimate a and 12 simultaneously via maximizing REML

nx1 v 8n><1




Covariates

dCovariates
— May or may not be of direct interest
— Confounding, nuisance, or interacting variables
— Subject-level
— Continuous or discrete
— One-sample model y; = o+, x+0; + ¢, for ith
subject
— Two-sample model y; = o(g+ 0, X, H0LX, 0 X, 40, +

€

JExamples
— Age, IQ, brain volume, cortex thickness
— Behavioral data




Handling covariates: one qrou

1 Centering:
— ¥, = X+to, X+ 0, + ¢ for ith subject
— Interested in group effect &, (x=0) while controlling
(partialling out) x
- o, - slope (change rate): % signal change per unit of x

— Interpretability: group effect &, at what value of x: mean or
any other value?

-4 2 0 2 4 6

- ) 2 4
X centered around mean X centered around 3




Covariates: trickier with > 1 group

dCenter and slope
— Vi = OO0 X, HOLX, X5+ 0, + g, for ith subject
* X,: group indicator
* X,: covariate

* X5: group effect in slope (interaction btw group and
covariate)

— What we're interested in
 Group effects &, and «, while controlling covariate

— Interpretability

 Center

— Group effect ;and o, at what covariate value?
— Same or different center across groups?

» Slope

— same (x;=0) or different (a;#0) slope across groups




Covariates: scenarios with 2 groups

 Center and slope
— Y = Ot O X, H0LX, X5+ 0; + €, for ith subject
— Interpretability
Same center and same slope (x;=0)
Different center with same slope (x;=0)
Same center with different slope (a;70)
Different center and different slope (a,70)

| 2 4 6 8
Same Slope Different Slope




Covariates: scenarios with 2 groups

Group2

6 8
Same Slope

If covariate for each group  « \When slopes are different:

IS centered on same value — Group effect depends on
— Group effect constant covariate value, even when
regardless of that value centering is properly done

Else group effect depends
on centering difference




Covariates: scenarios with 2 groups

« Just "Regressing Out" a covariate is not enough!

— Need to center properly
— Need to consider covariate value (if a4 significant)




Notes on a scandal
» Beware selection bias / circularity

Circular analysis in systems neuroscience: the dangers of double dipping.
Kriegeskorte et al. Nature Neuroscience 12(5) 2009

Voodoo correlations in social neuroscience

(now known as Puzzlingly High Correlations in fMRI Studies of Emotion, Personality, and Social Cognition)
Vul et al. Perspectives in Psychological Science 2009

Correlations in Social Neuroscience Aren't Voodoo: Commentary on Vul et al.
Lieberman et al. Perspectives in Psychological Science 2009

... (6 more commentaries/responses!) ...

Big Correlations in Little Studies Inflated fMRI Correlations Reflect Low Statistical Power
Tal Yarkoni Perspectives in Psychological Science




ROl selection bias
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ROl selection bias
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ROI definition is affected by noise

independent
ROI
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Regional-average activation analysis

central slice

Slide from N. Kriegeskorte




Regional-average activation analysis
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Regional-average activation analysis

independent-data ROI
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Regional-average activation analysis

(1)- Bias towards high values of A

AND D —
No bias towards B

(2)- Higher threshold (t) to meet
multiple comparison correction

- The higher the threshold the SEmifEl sfiae
worse the bias in (1)

(problem made worse in low
power cases) 1 & 2 result in sample

where A>B !




Notes on a scandal

* Avoid hysteria
— Circularity can lead to incorrect inferences

— Ginormoulsy high correlations
 Maybe caused by circularity

* More likely caused by low power (very small
number of subjects, many voxels)

e But this does not mean that correlations do not
exist!

— But the average correlation of those that pass a high
threshold can be much higher than true correlation




Notes on a scandal

* Consider your false negatives

— What's wrong with being 'safe'?
» We are likely missing A LOT (>50%) of true positives

* Wrong models about how the brain works !
— Connectivity models very sensitive to the nodes in model

— What can be done?

 More power by better modeling signal AND noise
 More power by having more subjects
 Judicious covariate selection

« Consider what happens at lower thresholds.
— More nodes or just bigger blobs?




Acknowledgments

Robert C
NIMI

G ang C he N of Mental Health

Rasmus Birn

Niko Kriegeskorte v
Marta Bianciardi (/
Der-Yow Chen =

Kristina Simonyan

Michael Beauchamp

Julien Doyon




